LETTER TO EDITOR (VIEWERS CHOICE)

NEONATAL HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS (HLH)

Purvi Mittal, Sunil Taneja, Yashwant Kumar Rao, Ambrish Gupta*

Keywords: neonate, hemophagocytic lymphohistiocytosis

A 28 days old female child presented with fever for 3 days followed by fullness of abdomen. She was born at term by non-consanguineous marriage. Elder sibling had died at 1 ½ months of age due to septicaemia. On presentation, the child was dull and lethargic, had hepatosplenomegaly with few purpuric spots on the abdomen. Antibiotics were started in view of clinical suspicion of sepsis. Investigations showed hemoglobin 9.5g/L, white cell count (WBC) 5900 cells/cumm (neutrophils 19%), platelets 35,000 cells/cumm, serum bilirubin 18.6 mg/dl (direct 0.6 mg/dl), C-reactive protein (CRP) 5.51mg/L, prothrombin time (PT) > 100 sec and activated partial thromplastin time (APTT) >100 sec. Blood culture did not grow any organism. Ultrasound (USG) abdomen revealed hepatosplenomegaly with mild ascites. Babygram (x-ray of entire body) and CT scan head did not reveal any bony lesion. During the following week condition of the child deteriorated and a repeat blood count was done which showed a drop in hemoglobin to 7.5g/L, WBC decreased to 3000 cells/cumm (neutrophils 8%). Platelets dropped down to 20,000 cells/cumm, ESR was 60mm and there were atypical large mononuclear cells with moderate amount of foamy cytoplasm. Four days later a bone marrow aspiration was done which was suggestive of hypoplastic marrow with hemophagocytes. Serum ferritin was > 16500 mg/ml, triglycerides were 260 mg/dl. Serum bilirubin increased to 30.1 mg/dl (direct 16.7 mg/dl). At the time of doing flow cytometry total leucocyte count was 2,800 cells/cumm with 90% lymphocytes and there were 42% T cells (Normal range 50-72%), 6.3% B cells (Normal range 16-38%), 40% NK cells (Normal range 9-16%), 57% NK+ perforin (Normal range 80-90%). The child was started on steroids and intravenous immunoglobulin IVIG (2gm/kg) on day 5 but continued to deteriorate and expired on day 7 of admission.

The lymphoproliferative disorder of hemophagocytic lymphohistiocytosis (HLH) can be divided into two categories: primary (familial) hemophagocytic lymphohistiocytosis (FHL) and secondary HLH. The incidence of FHL is 1:50,000 births, with an equal gender distribution. (1) In contrast to secondary HLH, which may affect any age and may resolve spontaneously, FHL is seen primarily in children and is fatal if untreated. (1) Most cases of FHL are diagnosed before 2 years of age, and the disease may present in the newborn period. (2-4) The diagnostic criteria for HLH include fever for 7 or more days, splenomegaly, cytopenia of two or three lineages (unassociated with a hypocellular or dysplastic marrow), hypertriglycerideremia and/or hypofibrinogenemia, and histopathological evidence of hemophagocytosis in the bone marrow, spleen, liver, or lymph nodes. (5) Hepatomegaly, jaundice, lymphadenopathy, edema, and rash are also seen. There can be central nervous system involvement with meningismus, seizures, encephalopathy, and/or spinal fluid pleocytosis. Cutaneous manifestations include erythoderma, generalized purpuric macules and papules and morbilliform eruptions. Neonates presenting with isolated thrombocytopenia or hepatic dysfunction, with other characteristic findings becoming evident subsequently, have also been reported. (4) Clinical and laboratory parameters fulfilled the criteria for the diagnosis of HLH. In view of the fact that one sibling had died of a septicaemic illness, a possibility of hereditary HLH was entertained, but since gene mutation studies could not be done it could not be proved.

Because neonatal HLH can be rapidly fatal without specific intervention, it is recommended to start a treatment when a high clinical suspicion exists and results of diagnostic studies are still pending. Stem cell transplant is the standard treatment for FHL, once remission is achieved on immuno-modulatory therapy. (6) However in our setup genetic diagnosis is not available and stem cell therapy is difficult, hence we used steroid with IVIG as a favorable response with IVIG has been observed. (7) Other therapies include combined use of etoposide, cyclosporine A, and corticosteroid. Intrathecal treatment is suggested for patients with central nervous system. When the HLH protocol is ineffective, anti-thymocyte globulin may be suggested. Genetic counseling and family planning is of utmost importance. Subsequent pregnancies should be closely monitored and offspring referred for genetic testing. Mutations in the perforin gene have been reported to be present in 20-40% of FHL. Perforin staining in cytotoxic cells by flow cytometry has been documented as a screening test to identify children with FHL. (6) Other tests for genetic analysis include mutations in the Munc13-4 and syntaxin 11 gene. (8)

Authors Contribution
PM, ST, YKR drafted the article. All authors critically appraised the manuscript for intellectual content.

Funding: None

Conflict of Interest : None

References :

From: Department of Pediatrics and *Department of Pharmacology, GSVM Medical College, Kanpur, India.

Address for Correspondence: Dr. Purvi Mittal, Flat no. 7 Panch Ratan Apt, 7/128 Swaroop Nagar, Kanpur 208002, India.

Email : purvimittal@gmail.com

DOI No. 10.7199/ped.oncall.2015.69

LETTER TO EDITOR (VIEWERS CHOICE)

coNgeNital erytHropoietic porpHyria – aN UNUsUal caUse oF Hemolytic aNemia iN aN iNFaNt

Sundari S, Kumarasamy K, Durai Arasan G, Srinivasan V, Karamath SP, Riswana F

Keywords: porphyria, haemolytic anemia, infancy

Congenital erythropoietic porphyria (CEP) is a rare metabolic disorder leading to hemolytic anemia, skin blisters, scarring, reddish urine, pigmented hair, hypertrichosis and discoloured teeth. An 11 month old male infant born of consanguineous marriage presented with abdominal distension of nine months duration with increasing pallor. There was history of passing high colored urine for 6 months. Birth history and development was normal. On examination the infant was alert, had pallor with a diffuse hyperpigmentation, sparse hypopigmented scalp hair, few dyspigmented scars and hypertrichosis (Figure 1) with splenohepatomegaly. His vital signs and anthropometry were normal. Other systems were normal. Investigations showed white cell count of 8500 cells/cumm (polymorphs 48%, lymphocytes 50%), hemoglobin of 5 gm%, and platelet count of 80,000 cells/cumm. Peripheral smear showed severe hypochromasia, anisopoikilocytosis, many polychromatic red blood cells, teardrop cells, target cells and platelets in clumps. Reticulocyte count was 4%. Liver and renal function tests were normal. HIV by Elisa, Mantoux test were negative and coomb’s test was negative. Vitamin B12 assay and hemoglobin electrophoresis were normal. Bone marrow aspiration revealed hypocellular marrow with myeloid: erythroid ratio of 3:1 and < 2% blasts and no storage cells. Urine metabolic screening was negative and stool occult blood was negative. X-ray long bones were normal. Urine did not reveal any proteins or deposits. Urine was reddish brown which changed to purplish red on standing. Cutaneous scars, hyperpigmentation, hypertrichosis, anemia and splenomegaly with erythrodontia and burgundy color urine favored the diagnosis of porphyria. Urinary porphyrins were elevated (>700mg/day). Woods lamp examination of urine and teeth showed brilliant fluorescence. Erythrocyte fluorescence testing was positive. A diagnosis of CEP was made. Confirmatory testing by enzyme assay (uroporphyrinogen synthase enzyme) was not done due to non-availability. Infant was transfused with packed red blood cells, along with supplementation of vitamin D and beta-carotene.

Figure 1: Child with depigemented hair and hyperpigmented skin

Porphyrias are disorders of biosynthesis of heme. Acute porphyrias include aminolevulinic acid dehydratase deficiency porphyria, acute intermittent porphyria, hereditary coproporphyria and variegate porphyria. Non-acute porphyrias include CEP, porphyria cutanea tarda, hepatic erythropoietic porphyria and erythropoietic protoporphyria. CEP is due to the deficiency of uroporphyrinogen III synthase enzyme. Symptoms appear in infancy as presented above. Blisters and vesicles in sun exposed areas, with scarring and deformities of the skin is common. (1) Diet, drugs, sun exposure or phototherapy precipitate the symptoms. (2) Deposits in the teeth lead to red staining and its fluorescence called as erythrodontia. Long bones may show expansion and/or mild bone loss. Diagnostic tests include urinary porphyrins (3), spectroflurometric tests, decreased enzyme activity or increased uroporphyrin1 and coproporphyrin 1 isomers and genetic studies (mutation in biallelic mutation in URO synthase or identification of the mutation in hemizygous linked gene GATA1). Treatment of CEP